PowerDMARC

Cybersecurity Risks of Generative AI

Cybersecurity Risks of Generative AI

As the newfound power of generative AI technology emerges, so do the generative AI cybersecurity risks. Generative AI represents the cutting-edge technology frontier, combining Machine Learning (ML) and Artificial Intelligence (AI) capabilities.

We are on the verge of a technological renaissance where AI technologies will advance exponentially. However, the risks associated with generative AI cybersecurity cannot be overlooked. Let’s explore this angle to understand how you can prevent the cybersecurity challenges that result from the use and abuse of Generative AI.

What is Generative AI?

Generative AI, short for Generative Artificial Intelligence, refers to a class of artificial intelligence techniques that focus on creating new data that resembles or is similar to existing data. Instead of being explicitly programmed for a specific task, generative AI models learn patterns and structures from the data they are trained on using a text, video, or image annotation tool,  and then generate new content based on that learned knowledge.

The primary objective of generative AI is to generate data that is indistinguishable from real data, making it appear as if it was created by a human or came from the same distribution as the original data. This capability has numerous applications across various domains, such as natural language generation, image synthesis, music composition, text to speech conversion and even video generation.

Why is Generative AI The Next Biggest Cyber Security Threat?

GPT-3, GPT-4, and other generative AI tools are not immune to generative AI cybersecurity risks and cyber threats. Companies must implement policies to avoid significant cyber risks associated with generative AI.

As highlighted by Terence Jackson, a chief security advisor for Microsoft, in an article for Forbes, the privacy policy of platforms like ChatGPT indicates the collection of crucial user data such as IP address, browser information, and browsing activities, which may be shared with third parties. 

Jackson also warns about the cyber security threats posed by generative AI, expanding the attack surface and providing new opportunities for hackers to exploit.

Furthermore, a Wired article from April revealed the vulnerabilities of these tools, emphasizing the cyber risks of generative AI.

In just a few hours, a security researcher bypassed OpenAI’s safety systems and manipulated GPT-4, highlighting the potential generative AI cyber threats and the need for robust cyber security measures.

Unveiling Top 7 Cybersecurity Risks of Generative AI

Generative AI is a powerful tool for solving problems but poses some risks. The most obvious risk is that it can be used for malicious purposes, such as intellectual property theft or fraud.

Creation of Phishing Emails

The biggest cybersecurity risk of generative AI is the creation of phishing.

The threat of phishing is real, and it’s not going away.

As more companies use email and other forms of digital communications to market their products or services, criminals are becoming more sophisticated in their efforts to trick people into giving up personal information.

The most common scams are called “phishing” because they often involve a fake email sent from a trusted source (such as your bank) that contains an attachment or link that looks legitimate but actually leads to a fake website where you enter your credentials to gain access to your account.

Model Manipulation and Poisoning

One major generative AI cybersecurity risk is model manipulation and poisoning. This type of attack involves manipulating or changing an existing model so that it produces false results.

For example, an attacker could change an image to look like another image from your database instead of what it is. The attacker could then use these manipulated images as part of their attack strategy against your network or organization.

Adversarial Attacks

Adversarial attacks on machine learning algorithms are becoming more common as hackers look to exploit the weaknesses of these systems.

The use of adversarial examples — an attack that causes an algorithm to make a mistake or misclassify data — has been around since the early days of AI research.

However, as adversarial attacks become more sophisticated and powerful, they threaten all types of machine learning systems, including generative models or chatbots.

Data Privacy Breaches

A common concern with generative models is that they may inadvertently disclose sensitive data about individuals or organizations.

For example, an organization may create an image using generative models that accidentally reveal confidential information about its customers or employees.

If this happens, it can lead to privacy breaches and lawsuits for damages.

Deepfakes and Synthetic Media

Generative models can also be used for nefarious purposes by generating fake videos and audio recordings that can be used in deepfakes (fake videos) or synthetic media (fake news). While these attacks are concerning, it’s important to remember that AI can also be harnessed for positive uses. For instance, AI video generator tools are great solutions for content creation, enabling users to produce high-quality videos for marketing, education, and entertainment. Using AI voices in the production of audio content can significantly improve accessibility, enabling people with hearing disabilities to access information more effectively and contributing to more immersive listening experiences for all.

The technology behind these attacks is relatively simple: someone needs access to the right dataset and some basic software tools to start creating malicious content.

Intellectual Property Theft

Intellectual property theft is one of the largest concerns in the technology industry today and will only increase as artificial intelligence becomes more advanced.

Generative AI can generate fake data that looks authentic and passable to humans.

This data type could be used in various industries, including healthcare, finance, defense, and government. It could even create fake social media accounts or impersonate an individual online.

Malicious Use of Generated Content

Generative AI can also manipulate content by changing the meaning or context of words or phrases within text or images on a webpage or social media platform.

For example, if you were using an application that automatically generated captions for images with no human intervention required. It would allow someone to change the caption from “a white dog” to “a black cat” without actually changing anything about the photo itself (just by editing the caption).

How to Strengthen Your Defenses Against Generative AI Cybersecurity Risks

In response to this rising concern, organizations must strengthen their defenses against these risks.

Here are some tips for doing so:

Switch to DMARC

DMARC is an email authentication protocol helping prevent email spoofing and phishing attacks that impersonate your own domain.

By implementing a DMARC analyzer, organizations can ensure to the extent that only authorized senders can use their domain for email communications, thereby minimizing the risks associated with AI-generated phishing emails.  

DMARC provides additional layers of protection by enabling domain owners to receive reports on email delivery and take necessary actions to strengthen email security, thereby acting as a shield against generative AI cybersecurity risks.

You need to implement either SPF or DKIM or both (recommended) as a prerequisite for DMARC implementation.

Conduct Security Audits

Another way to prevent hackers from accessing your system is by conducting cybersecurity audits.

These audits will help identify potential weaknesses in your system and suggest how to patch them up before they become major problems (such as malware infections).

Adversarial Training

Adversarial training is a way to simulate the adversarial attack and strengthen the model. It uses an adversary (or an attacker) that tries to fool the system by giving it wrong answers. The goal is to find out how the model will react and what its limitations are in order for us to design more robust models.

Robust Feature Extraction

Another solution is Robust Feature Extraction (RFE). RFE uses deep learning to extract relevant features from raw images. The technique is scalable and can be used on large datasets. It can also be combined with other techniques, such as Verification Through Sampling (VTS) and Outlier Detection (OD), to improve the accuracy of feature extraction.

Secure Model Architecture

Secure Model Architecture (SMA) uses a secure model architecture to prevent attacks that exploit vulnerabilities in software code, data files, or other components of an AI system. The idea behind SMA is that an attacker would have to find a vulnerability in the code instead of just exploiting a weakness in the system itself. Employing comprehensive software code audit services is crucial for identifying and mitigating vulnerabilities within AI systems, ensuring the integrity and security of generative AI technologies against sophisticated cyber threats.

Regular Model Auditing

Model auditing has been an essential part of cybersecurity for many years. It involves examining the models used in a system to ensure that they are sound and up to date. Model auditing can also be used to detect vulnerabilities in models, as well as identify models that might have been corrupted or altered by hackers.

Input Validation and Filtering

Input validation is one of the most important steps a model developer can take before deploying their model into production environments. Input validation ensures that data being entered into a model isn’t inaccurate or maliciously altered by hackers who might try to exploit vulnerabilities within the system. Input filtering allows developers to specify which data types should be allowed through their models while preventing any other kinds of data from getting through as well.

Final Words

While the technology offers numerous benefits and advancements, it also opens the door to potential vulnerabilities and threats.

The ability of generative AI to create convincing fake images, videos, and text raises concerns regarding identity theft, misinformation campaigns, and fraud.

Moreover, the malicious use of generative AI can amplify existing cyber threats, such as phishing attacks and social engineering.

As this technology continues to evolve, organizations and individuals must prioritize cybersecurity measures, including robust authentication, continuous monitoring, and regular vulnerability assessments, to mitigate the risks associated with generative AI.

By doing so, we can harness the potential of this technology while safeguarding against its inherent cybersecurity challenges.

Exit mobile version