A widely known internet standard that facilitates by improving the security of connections between SMTP (Simple Mail Transfer Protocol) servers is the SMTP Mail Transfer Agent-Strict Transport Security (MTA-STS).

In the year 1982, SMTP was first specified and it did not contain any mechanism for providing security at the transport level to secure communications between the mail transfer agents. However, in 1999, the STARTTLS command was added to SMTP that in turn supported the encryption of emails in between the servers, providing the ability to convert a non-secure connection into a secure one that is encrypted using TLS protocol.

In that case, you must be wondering that if SMTP adopted STARTTLS to secure connections between servers, why was the shift to MTA-STS required? Let’s jump into that in the following section of this blog!

The Need for Shifting to MTA-STS

STARTTLS was not perfect, and it failed to address two major problems: the first being that it is an optional measure, hence STARTTLS fails to prevent man-in-the-middle (MITM) attacks. This is because a MITM attacker can easily modify a connection and prevent the encryption update from taking place. The second problem with it is that even if STARTTLS is implemented, there is no way to authenticate the identity of the sending server as SMTP mail servers do not validate certificates.

While most outgoing emails today are secured with Transport Layer Security (TLS) encryption, an industry standard adopted even by consumer email, attackers can still obstruct and tamper with your email even before it gets encrypted. If you email to transport your emails over a secure connection, your data could be compromised or even modified and tampered with by a cyber attacker. Here is where MTA-STS steps in and fixes this issue, guaranteeing safe transit for your emails as well as successfully mitigating MITM attacks. Furthermore, MTAs store MTA-STS policy files, making it more difficult for attackers to launch a DNS spoofing attack.

MTA-STS offers protection against :

  • Downgrade attacks
  • Man-In-The-Middle (MITM) attacks
  • It solves multiple SMTP security problems, including expired TLS certificates and lack of support for secure protocols.

How Does MTA-STS Work?

MTA-STS protocol is deployed by having a DNS record that specifies that a mail server can fetch a policy file from a specific subdomain. This policy file is fetched via HTTPS and authenticated with certificates, along with the list of names of the recipients’ mail servers. Implementing MTA-STS is easier on the recipient’s side in comparison to the sending side as it requires to be supported by the mail server software. While some mail servers support MTA-STS, such as PostFix, not all do.

hosted MTA STS

Major mail service providers such as Microsoft, Oath, and Google support MTA-STS. Google’s Gmail has already adopted MTA-STS policies in recent times. MTA-STS has removed the drawbacks in email connection security by making the process of securing connections easy and accessible for supported mail servers.

Connections from the users to the mail servers are usually protected and encrypted with TLS protocol, however, despite that there was an existing lack of security in the connections between mail servers before the implementation of MTA-STS. With a rise in awareness about email security in recent times and support from major mail providers worldwide, the majority of server connections are expected to be encrypted in the recent future. Moreover, MTA-STS effectively ensures that cybercriminals on the networks are unable to read email content.

Easy and Speedy Deployment of Hosted MTA-STS Services by PowerDMARC

MTA-STS requires an HTTPS-enabled web server with a valid certificate, DNS records, and constant maintenance. PowerDMARC makes your life a whole lot easier by handling all of that for you, completely in the background. Once we help you set it up, you never even have to think about it again.

With the help of PowerDMARC, you can deploy Hosted MTA-STS at your organization without the hassle and at a very speedy pace, with the help of which you can enforce emails to be sent to your domain over a TLS encrypted connection, thereby making your connection secure and keeping MITM attacks at bay.